

K. Le Bail⁽¹⁾, E. Nilsson⁽²⁾, J. M. Gipson⁽¹⁾ (1) NVI Inc. – GSFC/NASA, Greenbelt, MD, United States (2) Chalmers University of Technology, Gothenburg, Sweden

- Context: Time series in VLBI;
- Tools used: SSA and Allan variance;
- Using the SSA to analyze UT1-TAI;
- Predicting VLBI source position (1308+326);
- Conclusions and perspectives.

Source 1308+326 *Right ascension x cos (declination)*

Right Ascension [mas Time [year]

- **Observations:**
 - Sources (right ascension, declination);
 - Meteorologic data (P,T,H);
 - Stations.
- Sources and stations are not observed regularly (availability of the stations in the scheduling, station's breakdown,...).

- Data processing:
 - Earth Orientation Parameters;
 - Celestial Reference Frame (sources);
 - Terrestrial Reference Frame (stations);
 - Tropospheric parameters.

- The Singular Spectral Analysis (SSA):
 - To extract the main signal;
 - To regularize;
 - To predict.
- Type and level of noise:
 Allan variance.

UT1-TAI analysis

UT1-TAI from 2010a.eob: Original Time Series with drift removed.

UT1-TAI analysis: Regularization of the data span

- Common difficulty in VLBI time series analysis:
 - The time span between measurements is irregular.
- Solution adopted: discretization
 - Choice of an appropriate gridspace to define an equispaced time grid;
 - Weighted average of data to transform the original time series to the equispaced time grid;
 - Filling the gaps by iteratively solving the SSA (Zhang's iterative SSA approach / Section 9.2 of Elsner/Tsonis textbook).

UT1-TAI analysis: SSA First iteration

UT1-TAI for 2010a.eob: Original Time Series and Reconstructed Time Series

2010 AGU Fall Meeting 13-17 December - San Francisco, CA, USA Session G21c: Development and Testing of Methods for Detecting and Estimating Unsteady Motion in Geodetic Time Series

UT1-TAI analysis: SSA First iteration

Residual time series and

Allan variance

2.5 3 log10 τ Session G21c: Development and Testing of

2010 AGU Fall Meeting 13-17 December - San Francisco, CA, USA

Methods for Detecting and Estimating **Unsteady Motion in Geodetic Time Series**

3.5

RC30.005 \Rightarrow 2.4-year term \Rightarrow 14-year term \Rightarrow 14-year term

UT1-TAI analysis: SSA Second iteration

2010 AGU Fall Meeting 13-17 December - San Francisco, CA, USA

Session G21c: Development and Testing of Methods for Detecting and Estimating Unsteady Motion in Geodetic Time Series

Residual time series and

Allan variance

UT1-TAI analysis: SSA Second iteration

2010 AGU Fall Meeting 13-17 December - San Francisco, CA, USA

Session G21c: Development and Testing of Methods for Detecting and Estimating **Unsteady Motion in Geodetic Time Series**

UT1-TAI - Conclusions

SSA decomposes the time series:

- Tendency
- Periodic signals:
 - annual, semi-annual, 14-year, 2.4-year
- White noise.

Source 1308+326 Prediction of signal

- Possible reasons for scatter: source structure, hardware/software, geometry of the observation (schedules),...
- Reconstructed Components RC (from SSA analysis) are modeled as an Auto Regressive process of order n: $X_t = \sum_{i=1}^n \varphi_i X_{t-i} + \varepsilon_t$ where φ_i are the parameters of the process and ε_t is white noise.
- Prediction by:
 - Calculating the parameters from known data;
 - Simulating surrogate data for each RC and sum the components.

Conclusions and perspectives

Conclusions:

- The signal in UT1-TAI time series is complex and composed of periodic signals of different periods and white noise.
- The SSA may be used to predict source position changes in time and is efficient in the short-term (one to two years).

Perspectives:

- Testing the impact of the discretization step on the time series.
- Repeating the analysis on other VLBI time series (global station network).
- MSSA applied to multi-variate VLBI time series and comparison with PCA.

Discussion: stationarity

PSD after removing low-frequency component:

UT1-TAI (SSA)

El Niño / La Niña

- El Niño refers to the large-scale ocean-atmosphere climate phenomenon linked to a periodic warming in sea-surface temperatures across the central and east-central equatorial Pacific;
- La Niña refers to the periodic cooling of ocean surface temperatures in the central and east-central equatorial Pacific.

• El Niño:

- **-** 1986/08-1988/02
- 1991/05-1992/07
- 1994/05-1995/03
- **-** 1997/04-1998/05
- 2002/05-2003/03
- 2004/05-2005/02
- 2009/06-2010/04

La Niña:

- 1984/10-1985/09
- **-** 1988/05-1989/05
- **1995/09-1996/03**
- 1998/07-2000/06
- **-** 2000/09-2001/02
- 2007/04-2008/05